Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Protein S-glutathiolation: redox-sensitive regulation of protein function.

Identifieur interne : 000831 ( Main/Exploration ); précédent : 000830; suivant : 000832

Protein S-glutathiolation: redox-sensitive regulation of protein function.

Auteurs : Bradford G. Hill [États-Unis] ; Aruni Bhatnagar

Source :

RBID : pubmed:21784079

Descripteurs français

English descriptors

Abstract

Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."

DOI: 10.1016/j.yjmcc.2011.07.009
PubMed: 21784079
PubMed Central: PMC3245358


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Protein S-glutathiolation: redox-sensitive regulation of protein function.</title>
<author>
<name sortKey="Hill, Bradford G" sort="Hill, Bradford G" uniqKey="Hill B" first="Bradford G" last="Hill">Bradford G. Hill</name>
<affiliation wicri:level="2">
<nlm:affiliation>Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bhatnagar, Aruni" sort="Bhatnagar, Aruni" uniqKey="Bhatnagar A" first="Aruni" last="Bhatnagar">Aruni Bhatnagar</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:21784079</idno>
<idno type="pmid">21784079</idno>
<idno type="doi">10.1016/j.yjmcc.2011.07.009</idno>
<idno type="pmc">PMC3245358</idno>
<idno type="wicri:Area/Main/Corpus">000908</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000908</idno>
<idno type="wicri:Area/Main/Curation">000908</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000908</idno>
<idno type="wicri:Area/Main/Exploration">000908</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Protein S-glutathiolation: redox-sensitive regulation of protein function.</title>
<author>
<name sortKey="Hill, Bradford G" sort="Hill, Bradford G" uniqKey="Hill B" first="Bradford G" last="Hill">Bradford G. Hill</name>
<affiliation wicri:level="2">
<nlm:affiliation>Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202</wicri:regionArea>
<placeName>
<region type="state">Kentucky</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Bhatnagar, Aruni" sort="Bhatnagar, Aruni" uniqKey="Bhatnagar A" first="Aruni" last="Bhatnagar">Aruni Bhatnagar</name>
</author>
</analytic>
<series>
<title level="j">Journal of molecular and cellular cardiology</title>
<idno type="eISSN">1095-8584</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Glutathione (metabolism)</term>
<term>Glutathione Disulfide (metabolism)</term>
<term>Humans (MeSH)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidative Stress (MeSH)</term>
<term>Protein Processing, Post-Translational (MeSH)</term>
<term>Proteins (metabolism)</term>
<term>Signal Transduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Disulfure de glutathion (métabolisme)</term>
<term>Glutathion (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Maturation post-traductionnelle des protéines (MeSH)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines (métabolisme)</term>
<term>Stress oxydatif (MeSH)</term>
<term>Transduction du signal (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutathione</term>
<term>Glutathione Disulfide</term>
<term>Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Disulfure de glutathion</term>
<term>Glutathion</term>
<term>Protéines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
<term>Oxidative Stress</term>
<term>Protein Processing, Post-Translational</term>
<term>Signal Transduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Maturation post-traductionnelle des protéines</term>
<term>Oxydoréduction</term>
<term>Stress oxydatif</term>
<term>Transduction du signal</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">21784079</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>07</Month>
<Day>09</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1095-8584</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>52</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2012</Year>
<Month>Mar</Month>
</PubDate>
</JournalIssue>
<Title>Journal of molecular and cellular cardiology</Title>
<ISOAbbreviation>J Mol Cell Cardiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Protein S-glutathiolation: redox-sensitive regulation of protein function.</ArticleTitle>
<Pagination>
<MedlinePgn>559-67</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.yjmcc.2011.07.009</ELocationID>
<Abstract>
<AbstractText>Reversible protein S-glutathiolation has emerged as an important mechanism of post-translational modification. Under basal conditions several proteins remain adducted to glutathione, and physiological glutathiolation of proteins has been shown to regulate protein function. Enzymes that promote glutathiolation (e.g., glutathione-S-transferase-P) or those that remove glutathione from proteins (e.g., glutaredoxin) have been identified. Modification by glutathione has been shown to affect protein catalysis, ligand binding, oligomerization and protein-protein interactions. Conditions associated with oxidative or nitrosative stress, such as ischemia-reperfusion, hypertension and tachycardia increase protein glutathiolation via changes in the glutathione redox status (GSH/GSSG) or through the formation of sulfenic acid (SOH) or nitrosated (SNO) cysteine intermediates. These "activated" thiols promote reversible S-glutathiolation of key proteins involved in cell signaling, energy production, ion transport, and cell death. Hence, S-glutathiolation is ideally suited for integrating and mounting fine-tuned responses to changes in the redox state. S-glutathiolation also provides a temporary glutathione "cap" to protect protein thiols from irreversible oxidation and it could be an important mechanism of protein "encryption" to maintain proteins in a functionally silent state until they are needed during conditions of stress. Current evidence suggests that the glutathiolation-deglutathiolation cycle integrates and interacts with other post-translational mechanisms to regulate signal transduction, metabolism, inflammation, and apoptosis. This article is part of a Special Section entitled "Post-translational Modification."</AbstractText>
<CopyrightInformation>Copyright © 2011 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Hill</LastName>
<ForeName>Bradford G</ForeName>
<Initials>BG</Initials>
<AffiliationInfo>
<Affiliation>Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bhatnagar</LastName>
<ForeName>Aruni</ForeName>
<Initials>A</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>P20 RR024489</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>P20 RR024489-03</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL059378</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL55477</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>HL59378</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>RR024489</GrantID>
<Acronym>RR</Acronym>
<Agency>NCRR NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL055477-14</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL059378-13</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>R01 HL055477</GrantID>
<Acronym>HL</Acronym>
<Agency>NHLBI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2011</Year>
<Month>07</Month>
<Day>20</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>J Mol Cell Cardiol</MedlineTA>
<NlmUniqueID>0262322</NlmUniqueID>
<ISSNLinking>0022-2828</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011506">Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>GAN16C9B8O</RegistryNumber>
<NameOfSubstance UI="D005978">Glutathione</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>ULW86O013H</RegistryNumber>
<NameOfSubstance UI="D019803">Glutathione Disulfide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005978" MajorTopicYN="N">Glutathione</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019803" MajorTopicYN="N">Glutathione Disulfide</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018384" MajorTopicYN="N">Oxidative Stress</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011499" MajorTopicYN="N">Protein Processing, Post-Translational</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011506" MajorTopicYN="N">Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015398" MajorTopicYN="N">Signal Transduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>06</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2011</Year>
<Month>07</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2011</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2011</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2011</Year>
<Month>7</Month>
<Day>26</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>7</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">21784079</ArticleId>
<ArticleId IdType="pii">S0022-2828(11)00273-2</ArticleId>
<ArticleId IdType="doi">10.1016/j.yjmcc.2011.07.009</ArticleId>
<ArticleId IdType="pmc">PMC3245358</ArticleId>
<ArticleId IdType="mid">NIHMS320708</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biochemistry. 2008 Oct 21;47(42):11144-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18816065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2004 Mar 16;101(11):3780-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15004285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 3;278(1):679-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12409293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2011 Feb 18;108(4):418-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21193739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Dec 29;281(52):40354-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071618</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 May;10(5):963-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18205546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2008 Aug 15;373(1):169-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18555796</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Apr 2;274(14):9427-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10092623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 13;279(7):5257-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14630926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Nov 12;279(46):47939-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15347644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2005 Feb;6(2):150-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15688001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2006 Feb;69(2):501-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16288082</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2007 Feb 2;100(2):213-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17185628</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2007 Feb 1;178(3):1835-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17237434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Jul 6;276(27):24473-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11320081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Aug 29;103(35):13086-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16916935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Jun 3;280(22):21099-106</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15814611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2008 Mar 15;44(6):1180-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2010 May 4;121(17):1912-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20404253</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1921;15(2):286-305</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16742989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2004 Aug;287(2):C246-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15238356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1985;54:305-29</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2862840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 May 15;46(19):5754-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17444656</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Sep 1;41(5):775-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16895798</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 May 13;47(19):5465-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18419134</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2001 Nov 27;40(47):14134-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11714266</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2010 Dec 17;403(3-4):335-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21078302</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2009 Jan 26;184(2):241-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19171757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ J. 2007 Jan;71(1):100-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17186986</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Mar 22;277(12):9806-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11777920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Drug Metab Rev. 2008;40(3):465-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18642143</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2008 Mar;118(3):1110-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18274674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2007 Mar 15;42(6):823-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17320764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1985 Jul;82(14):4668-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3860816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2004;44:325-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2010;473:179-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20513478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):940-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cardiovasc Res. 2008 Jan 15;77(2):380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18006481</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2010 Oct 1;13(7):1023-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20392170</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Jun 2;281(22):15110-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16567803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 1987 Jan 15;36(2):219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3814167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Oct 28;36(43):13349-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9341227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2008 Jul 23;582(17):2609-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18586034</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2009 Jun;29(11):3229-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19332553</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Enzymol Relat Areas Mol Biol. 1969;32:173-219</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4892500</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2008 Nov 4;118(19):1970-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18936326</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 2005;45:51-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15822171</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2009 Jul 17;105(2):185-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19542013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Biosci (Landmark Ed). 2011;16:553-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21196188</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2008 Dec;28(23):7139-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18809573</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Mar 19;99(6):3505-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11904414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Mar 18;286(11):9298-307</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21216949</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Mar 18;280(11):10846-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15653693</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2008 Mar 19;27(6):865-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18309294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2010 Dec 23;468(7327):1115-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21179168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 17;285(51):39646-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20937819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nitric Oxide. 2008 Sep;19(2):68-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18503780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2008 Nov;10(11):1941-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18774901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cardiovasc Med. 2006 May;16(4):109-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16713532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2006 Jul 1;41(1):86-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16781456</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):9101-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18223294</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2010 Jul 23;107(2):228-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20508180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neurochem Res. 2009 Apr;34(4):727-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19199029</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Clin Invest. 2001 Jul;108(2):223-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11457875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2010;5(11):e14151</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21152397</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 Jun 11;274(24):17075-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10358060</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1999 May 18;38(20):6699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350489</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Nov 9;282(45):32640-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17848555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Biol. 2009 Nov;212(Pt 22):3612-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19880721</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Aug;267(16):4928-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10931175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 May 28;285(22):17077-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20348099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1997 Dec 16;36(50):15801-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9398310</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Interv. 2007 Dec;7(6):313-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18199853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1990 Jun 29;169(3):1075-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2363716</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2003 Nov;17(14):2088-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12958160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2009 Feb-Apr;30(1-2):1-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18796312</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2010 Oct 15;49(7):1221-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20638471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Pharmacol. 2005 Sep;68(3):847-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2003 Mar 1;65(5):741-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12628487</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2010 Jun 15;79(12):1699-705</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20097178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2000 May 1;28(9):1349-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10924854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2002 Jun 12;124(23):6759-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12047197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):813-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771672</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2005 Jul-Aug;7(7-8):870-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15998242</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Apr 30;285(18):13712-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20194511</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Med. 2004 Nov;10(11):1200-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15489859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2002 Sep;64(5-6):1049-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12213604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2008 Jun;275(11):2942-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18435761</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Neuron. 1997 May;18(5):691-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9182795</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Aug 28;284(35):23364-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19561357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 8;281(36):26473-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16762927</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1975 Aug 12;14(16):3669-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">240387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Physiol Cell Physiol. 2006 Mar;290(3):C719-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16251471</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2009 Jan 15;417(2):513-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18800966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Aug;20(10):1715-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16809435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>IUBMB Life. 2007 Jan;59(1):21-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17365176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Aug 20;285(34):26135-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20538586</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Aspects Med. 2009 Feb-Apr;30(1-2):13-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18786560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2006 Jan 17;45(2):360-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16401067</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1925;19(5):787-819</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16743579</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Immunol. 2008 Aug;9(8):866-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18604212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Apr 25;257(8):4248-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7068633</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 2006 Mar;20(3):518-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16415107</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2006 Feb 28;71(5):551-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16337153</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 1983;52:711-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6137189</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2005 Dec;39(6):982-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16242147</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arterioscler Thromb Vasc Biol. 2006 Nov;26(11):2454-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16931794</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2004 Feb 15;36(4):464-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14975449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1977 Mar 29;497(1):192-204</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">557349</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Feb 1;144(2):553-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3993916</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Oct 31;278(44):42927-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12920114</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2009 Jan 27;48(3):645-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19119849</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Oct 6;482(3):237-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11024467</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Jul 9;279(28):29857-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15123696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FASEB J. 1999 Sep;13(12):1481-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10463938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Jul 3;46(26):7765-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17555331</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 1994 Oct;17(4):333-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8001837</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2006 Oct;41(4):613-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16806262</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 May 15;284(20):13940-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19299510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Dec 3;285(49):38641-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20926382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Biol Interact. 2009 Mar 16;178(1-3):250-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19061876</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2010 Jan 29;285(5):3168-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19940158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Jan 2;284(1):436-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18990698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 22;282(25):18427-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17468103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circulation. 2010 Dec 21;122(25):2699-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21135361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chromatogr B Analyt Technol Biomed Life Sci. 2009 Oct 15;877(28):3456-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19493711</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Pharmacol Toxicol. 1985;25:715-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3890714</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Cell Cardiol. 2002 Nov;34(11):1549-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12431453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1995 May 10;319(1):1-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7771771</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Oct 10;283(41):27991-8003</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18682392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Hypertension. 2010 Jul;56(1):105-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20479336</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2006 Dec 15;351(2):492-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17070779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1984;107:330-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6239077</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2003 Jun 12;423(6941):769-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12802338</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 May 27;286(21):18562-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21454534</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Kentucky</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Bhatnagar, Aruni" sort="Bhatnagar, Aruni" uniqKey="Bhatnagar A" first="Aruni" last="Bhatnagar">Aruni Bhatnagar</name>
</noCountry>
<country name="États-Unis">
<region name="Kentucky">
<name sortKey="Hill, Bradford G" sort="Hill, Bradford G" uniqKey="Hill B" first="Bradford G" last="Hill">Bradford G. Hill</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000831 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000831 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:21784079
   |texte=   Protein S-glutathiolation: redox-sensitive regulation of protein function.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:21784079" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020